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Dynamics of Crossover from Diffusion Growth 
to Coarsening in Quenched Binary Mixtures 1 

M. T o k u y a m a  2 4 and Y. E n o m o t o  5 

The effect of a high volume fraction on the dynamics of phase separations in off- 
critically quenched binary mixtures, such as binary alloys and polymer blends, 
is discussed from a new unifying point of view. Three characteristic stages are 
shown to exist after the nucleation stage. The first is the early stage [E] where 
the droplets grow directly and independently from the solution by diffusion. The 
second is the intermediate stage I l l ,  where the growth is no longer independent 
due to the three kinds of interactions among droplets: the many-body inter- 
action, the coagulation, and the Ostwald ripening. The third is the coarsening 
stage [C] where the growth from the solution is over. The dynamical behavior 
of phase separations is investigated analytically through the whole stages, 
including the dynamical scaling behavior, time exponents, and crossover. The 
numerical simulation is also performed to confirm the theoretical prediction. 

KEY WORDS: coagulation: crossover; diffusive long-range interactions; 
dynamical scaling; finite volume fraction: Ostwald ripening: phase separations. 

I. I N T R O D U C T I O N  

In spi te  of  m a n y  recent  w o r k s  on the d y n a m i c s  of  phase  s epa ra t ions  in 

off-cr i t ical ly q u e n c h e d  b ina ry  mix tures ,  i nc lud ing  e x p e r i m e n t a l  [ 1 - 6 ] ,  

n u m e r i c a l  [ 7 - 1 0 ] ,  and  theore t i ca l  [1 1 -14]  app roaches ,  there  is still a p o o r  

theore t i ca l  u n d e r s t a n d i n g  of  the c ros sove r  p h e n o m e n a  f rom ear l ie r  t imes  to 

la ter  t imes.  In a p rev ious  pape r  [ 1 5 ] ,  we presen ted  the sys temat ic  theory  
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for the crossover phenomena, which enables us to describe not only the 
time evolution of the single-droplet size distribution function but also that 
of the structure function. Thus, we have shown that this theory yields a 
good description of the dynamics of phase separations in off-critically 
quenched binary systems having a low volume fraction of one phase 0.1 
[15-17]. Beyond this volume fraction, however, the encounters of the 
droplets, in which two or more droplets meet within a distance less than 
their mean linear dimension, also become important. In this paper, there- 
fore, we discuss the extension of the previous theory to the case of higher 
volume fractions and also perform the computer simulation to confirm the 
theoretical prediction. 

When the binary system is off-critically quenched into the two-phase 
region from the one-phase region, it undergoes phase separation by nuclea- 
tion and growth of droplets of the minority phase. There are three kinds of 
growth mechanisms which cause droplets growth after the nucleation stage. 
The first is a direct growth mechanism where the droplets grow directly 
from the supersaturated solution by diffusion. This mechanism does not 
change the number of droplets but increases the volume fraction. The 
second mechanism is the Ostwald ripening mechanism, where the larger 
droplets grow at the expense of the smaller droplets [18]. This drastically 
reduces the number of droplets but does not change the volume fraction. 
The third mechanism is the coagulation mechanism, where when two or 
more droplets meet, the larger of them absorbs the smaller, conserving 
their total volume [18]. These mechanisms become important on different 
time scales, depending on the value of the volume fraction. In this paper, 
we restrict ourselves to the case of instantaneous nucleation where all 
droplets are nucleated only during the initial short time, that is, a nuclea- 
tion stage. Then, there exist three characteristic growth stages after the 
nucleation stage. The first is an early stage [E] where the diffusive inter- 
actions among droplets are not important, and the droplets, which have 
reached an appreciable size, grow directly and independently from the 
supersaturated solution by diffusion. The number density of the droplets 
does not change but the volume fraction of the droplets increases rapidly. 
After this stage, the three kinds of growth mechanisms compete with each 
other. This is an intermediate stage [I]  where the growth is no longer 
independent and is slowed down by the many-body effect. It depends on 
the value of the volume fraction, which mechanism first becomes important 
here. The final stage is a coarsening stage l-C] where the growth from the 
solution is over and the volume fraction becomes constant. 

Similarly to I, the single-droplet-size distribution function f(R, t) 
with radius R and the structure function S(k, t) are shown to satisfy the 
dynamical scaling laws at each stage, 
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n(t) F (  R ) 
. t  ( l~, t ) =  (1~ ) l t-------5~ -(--~ ' 

S(k,  t j = k M ( t ) a q b ( t ) ' ~  tP (k--~M, t )  

with the peak position of S(k,  t) as a function of k, 

kM( tJ~  L(t)  i 

and tile temporal power laws 

( R ) ( t )  ~ t"", nit) ~ t "", 

(l) 

(2) 

~( t )  ~ 'l/( R ) ( t )  (3) 

qs(t) ~ t"*, kM(t) ~ t "~ (4) 

where n(t) denotes the number density of the droplets, ( R ) ( t )  the average 
droplet radius, L( t )=[4gn( t ) /3 ]  J3 the interdroplet distance, and d = 3  
here. The time exponents satisfy the relation 

q,t, = CbIR - -  q , , ,  q,~. = I l t  ~ - q,t,/d= q,,/d (5) 

where 8 = 2  for stage I-E] and 6=  I/d for stages [I]  and [C]. Here qs(t) 
is the time-dependent volume fraction of the droplets and satisfies the 
conservation law 

~( t j  + , d ( t ) =  Q (6) 

where J( t )  represents the supersaturation and Q the total initial super- 
saturation. We should mention that the scaling functions F(x, t) and 
~/t(.x, t) still depend on time over the region, where the volume fraction q~(t) 
is changing in time, and then reach the time-independent functions for long 
times, where q~(t)= Q. In the following sections, we discuss only the time 
evolution of the distribution function. 

2. T H E O R Y  

Here we discuss the extension of the previous theory to the case of 
higher volume fractions. 

We consider a three-dimensional system, which consists of N spherical 
droplets of the minority phase with radius R(t)  and position-vector XA0) 
( i= 1, 2 ..... N), and a supersaturated solution of the majority phase. We 
assume that the droplets of the minority phase are spherical even for higher 
volume fractions and, also, that the distribution of their positions is 
stationary. The system has three characteristic lengths; the average droplet 
radius, (R) ( t ) ;  the interdroplet distance, L(t)  [-or kM(t) 1]; and the 
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screening length, / ( t )=  [4nn(tJ(R)(t)] ~/2 within which droplets have 
correlations. 

The concentration field of the supersaturated solution is described by 
the diffusion equation with the Gibbs-Thompson relationship as the 
boundary condition and the appropriate initial condition. Similarly to I, by 
solving the diffusion equation and using the mass conservation for each 
droplet, on the length scale of order l, one can derive the rate equation for 
the radius of the ith droplet, 

dt RAt)'- LRc--~, t) + ~, dt JE (7) 

with the critical radius 

Rc-(X~, t ) -  ~/I[Q~ _ ..v ~, d~ expE-IXi-Xjl2/4Dlt-s)]-[~ ~ s ~  5 d.~d 
/ l@ i l  I 

/4n ~\q 
×tmR,<.,.>-jj <8, 

where 2 is the capillary length, and D the diffusion coefficient. Equation (7) 
is also supplemented by the conservation of mass for the entire system, 
which is given by Eq. (6). The first term in Eq. (7) represents the diffusion 
current of solute across the boundary of the ith droplet. The second term, 
(dRi/dtJE, represents the encounter term, which one can deal with numeri- 
cally only by computer simulations since its explicit form is not known yet 
at the microscopic level. 

Equation (7) is a starting non-Markov equation for studying the 
phase-ordering dynamics in the metastable system over the whole time 
region after the nucleation stage. The first term of the denominator of 
Eq. (8) is a single-body effect of order q5 °. The second term represents a 
many-body effect due to the diffusive long-range interactions among 
droplets separated by a distance of order l and contains the higher-order 
terms in 4b ~ 2. Because of the many-body effect and the encounter effect, 
one can solve Eq. (7) only numerically by computer simulations. As was 
shown in I, therefore, we must further reduce it to obtain two kinds of 
macroscopic equations which we can reasonably analyze. One is a kinetic 
equation for the single-droplet-size distribution function f(R, t) with radius 
R, which is measured by an electron microscope. The other is a linear 
equation for the dynamic structure function S(k, t), which is observable by 
using small-angle scattering of neutrons, X-rays, or light. Next we discuss 
only the kinetic equation. 
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Define the dimensionless time r and radius a by r = ~tDt/R~, a = R/Ro, 
where Ro = ~/Q denotes the initial critical radius. Starting from Eq. (7), one 
can then obtain the non-Markov kinetic equation, up to order q~, 

?f(a , ' r )=?r  ~ ( a )  "~1 ?P? P-'I [). + cvl i i + I:_,vI21 

f l l t  i p ~P \ ( ' T I E  
(9) 

with the screening terms 

2(r)= I -/7(r) p 

[ l l r ) = ( a ) ( r )  1 + 3  ( ) . ) ( r s  y) v(rs y) dy 
o (10) 

I'1 I i(%" ) = p(#;. - ~ p,/. y ) 

v c2 ~(~ ) = ½p: v ~ ( r )  + pip). - (p:; ' .)  ) + p(hp2 - (hp-'), ) ) 

- p(p:  - II3 )(p-')./( l - p) ) + p(p - p2i(p) .  )(TE + In 6 + ½ In e,) 

where a(r)=[3clJ(r) /p3(r)]  1"-, clJ(r)=(Q/r~) v ( r ) (a3 ) ( r ) ,  p =  R / (  R ) =  
a / ( a ) ,  p,,(r) = ( p ' ) ( r ) ,  v(r) = n(r)/n(0), h (p ' )=  (p2/(I - p p ' ) ) ,  and 7F the 
Euler's constant. Here rs = Q(a)(O)3/clJ(O) is the screening time over which 
the diffusive long-range interactions become important, where the brackets 
denote the average over the relative-droplet-size distribution function 
K(p, r). Here there are two kinds of many-body effects due to the diffusive 
long-range interactions; a static many-body (screening) effect, which is 
determined only by the distribution function F(p, r), and a dynamic many- 
body (correlation) effect, which is determined by the correlation functions. 
The terms, 2(r), v~(r) ,  and vc:~(r) represent the screening effects of order 
~o, qs~,_ ~, and q:', respectively. The last term in the square brackets in 
Eq. (9) gives the correlation effect of order 4~ ~ :, where the terms of order 
q5 are omitted for simplicity. 

The second term of Eq. (9), (?/'/~r) F, represents the encounter effect. 
Under the binary encounter approximation, one can write it as [18] 

¢~.1"'~ =--1 dV' u'(p 3 -  p,3, p,3 r) g( V -  V', r ) f (a ' ,  z) 

- f ( a ,  z) j dV'n ' (p3,  p'3, r ) g ( P ' , ' c )  
II 

(11) 
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where V = R  3, f(a, r)=3RZg(R 3, r), and rE=(rs/16Q)'-/2 is the charac- 
teristic time for encounters. Here w(p3, p'3, r) denotes the encounter 
frequency. For long time this reduces to w(p 3, p,3, z) ~ (p3 + p'3)/2n(0) [18]. 

Equation (9) is a kinetic equation which describes the causal motion 
of the droplet growth over whole stages. From this equation, the distribu- 
tion function f(a ,  r) is then shown to satisfy the dynamical scaling given by 
Eq. (1). From Eq. (9) we also find the growth laws 

,4  
<a3 >(r )=  l/3(r) K o ( r ) -  3<2 >(r )+  (rs/Q) a(r) ¢'(r) 

dr 

d K°(r) - a ( r ) v ( r )  
d-~ In n ( r ) -  (a>(r)-~ 

with the coarsening rate 

where 

(12) 

, , n(O)  ~ -~- p ,3 ,  
o',r,=2-2-77fo dp fo dp'w(P3' r )F(p , r )F(p ' , r )  (14) 

As is seen from Eqs. (12), there are three kinds of growth mechanisms. The 
first is the direct growth mechanism from the supersaturated solution 
which is described by the term <2>, where (2>--- - < a >  for the single- 
body effect when z < z  s, and ( ) , > ~ - < a >  ~ for the many-body effect 
when z~>z s. The second is the Ostwald ripening mechanism which is 
described by the term Ko(r). The third is the encounter mechanism which 
is described by the term a¢,. After the nucleation stage, therefore, there 
exist three characteristic stages: the early stage [E] ,  the intermediate stage 
[I] ,  and the coarsening stage i-C]. Depending on the value of the volume 
fraction Q, we have the following three cases. The first is the case [1]  
Q < Qo with r s < rc < rE, where rc = r s / [Ko(~  )/13(,z,:, } V(rs)] 3 denotes the 
coarsening time over which the supersaturation d(z) becomes zero, and 
Qo(~0.14) is determined by ZE(Qo)=rc(Qo). This has already been 
discussed in I. The others are as follows. 

Case [2]  Q o < Q < Q I  with r s < r E < ' t c :  

[E]  l ~ < r < r s :  

[ I ]  { [Is]  r s~<r< rE :  
[ISE ] rE~<r<' t  c" 

[C] rc~<~: 

Ko~ I<~->1 "- <a>- '  >>crq, 

Ko~a~>> I<;.>1 ~ <a>- '  

K o ~ a ~ ~ r ° > >  1<2>1~ <a> -~ 

Ko(r) = lim F(p, r)lp 2 (13) 
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Case [3] Qt<Q w i t h t w < r s < r c :  

[E]  l ~ < r < r E :  

[I] {[IE] TE~T<T s " 
[]SE] TS~T<TC: 

[C] rc~<r: 

Ko= aq5 =0,  I <,~.>1 ~ ( a )  

Ko~O, a ¢ ~  1(2)[ ~ ( a )  

K o ~ a c b , > l ( ) . ) l ~ ( a )  ' 

Ko~ a ~  ~ r°~> I<;,)1 ~ (, ,)  - '  

where Q~(~0.289) is determined by TE(QI)=Ts(QI). In Fig. 1 the volume 
fraction dependence of the characteristic times and stages is shown. Thus, 
we obtain the temporal power laws given by Eq.(4) and the time 
exponents which are shown in Fig. 1, where the time exponent llg = 4/9 at 
stage [ I ]  is predicted from the simulation. At stage i-El we have 
( a ) ( r ) 2 = 2 r ,  and v ( r ) =  1 for all cases. At stage [C],  we also find for all 
cases 

(a)(z)3=Kr, v ( t ) = ( r s / p 3 ( ~ ) ) ( K r )  I (15) 

1 0 t '  ' .  . . . . . .  I . . . .  I . . . .  i . . . .  

.. 

,o' [C}.. i1,3.,,31 

103 "L.. 

............ ..................... (1/2,1/6) l 
lo rE]  (,,2.ol 

H )  [21 , [3) ] 
1 , , , , I , ' ~  , , I . . . .  V l  , , , , I , , , , |  

0 01 02 03 04 05 
Q 

Fig. 1. The volume fraction dependence of the characteristic 
times. The dashed line, the dotted line, and the solid line indicate 
TS, T E, and to, respectively. The numbers in the parentheses 
represent the time exponents (qk, ~t*). The arrows indicate the 
location of Qo and QI. 
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with the coarsening rate 

K(Q) = Ko(~, Q)+ rsCr(~', Q)/#3( ~,  Q) (16) 

where a(~ ,Q)~#3 t~ ) (16Q/r s )  2. Since Eq.(9) contains no adjustable 
parameters at stage I-C], the distribution function f(a, z) can also be 
obtained by solving it self-consistently under the boundary conditions 
#o(r) = Ira(r)= 1. This will be discussed elsewhere. 

3. NUMERICAL SIMULATION 

In this section we discuss the numerical results obtained by simulating 
Eq. (7) directly. The encounter term, (dRi/dr)E, has the mechanism where 
when two droplets meet, the larger of them absorbs the smaller, conserving 
their total volume. This is simulated as follows. Whenever two droplets 
meet, we replace the volume of the larger droplet by their total volume and 
then move its position at their center of mass, while the smaller droplet 
is removed from the system. This procedure is done simultaneously. 
Since there will be a time for the larger droplet to form a spherical shape, 
absorbing the smaller one, a slight quantitative change may be expected at 
stage [I] .  Since such a time scale is negligible compared to that of r c, 
however, the dynamics at stage I-C] will not be influenced. 

In the numerical simulation of Eq. (7), we have done the simulation 
20 times to improve the statistics, each time with a different configuration 
of the droplets. The main procedure of the simulation is similar to that 
of Ref. 15. In the simulation the encounters are shown to be seldom 
when Q < 0.1. When 0.1 ~< Q < 0.2, they are shown to occur sometimes, 
depending on what initial conditions one chooses. When Q/> 0.2, they are 
shown always to occur whatever initial conditions one chooses. In Fig. 2 
the log-log plot of the averaged droplet radius ( a ) ( r )  versus r is shown 
for Q = 0.2 ( © ), and 0.3 ( + ). For comparison, we also plot the analytical 
results without the encounter effect by the dashed line for Q = 0.1 and by 
the solid line for Q = 0.2. In Fig. 3 we show the histogram of the relative 
droplet size distribution function F(p, r) for Q =0.2 at r = 105. For com- 
parison, we also show the analytical result obtained by solving Eq. (9) 
without the encounter term, (¢~//?r)v., for Q = 0 . 2  at r =  105 by the dashed 
line. Thus, the coagulation effect is turned out to broaden and flatten the 
relative droplet size distribution function. In Fig. 4 the coarsening rate K(r) 
is plotted versus Q at r = 105. The analytical result obtained by neglecting 
the encounter effect is also shown by the solid line at r---105 for com- 
parison. 
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Fig. 2. A log-log plot of the average droplet radius versus time. 
Shown are the simulation data for Q = 0.2 ('2,) and Q = 0.3 ( + 1. 
The dashed line and the solid line represent the theoretical results 
without the encounter effect for Q = 0.1 and 0.2, respectively. 

1 5  

0 5  

05 I 15 

R/<R> 

Fig. 3. The relative-droplet-size distribution function 
versus the relative droplet radius for Q = 0 . 2  at ~=  10 5. 
The histogram indicates the result of the simulation 
with the encounter effect, and the dashed line the 
analytical result without it. 
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Fig. 4. The normalized coarsening rate as a 
function of volume fraction at r = 10 ~. Circles 
indicate the result of the simulation, and the 
solid line the theoretical result without the 
encounter effect. 

4. C O N C L U S I O N  

We have discussed the effect of a high-volume fraction on the 
dynamics of phase separations and shown that the coagulation effect 
strongly influences the growth kinetics qualitatively and quantitatively at 
stage [I] for Q > Qo, while it makes only a quantitative change at stage 
[C-I. In addition to the coagulation effect, the spatial correlations among 
droplets also start to play an important role in phase separations at a high 
volume fraction. This will be discussed elsewhere. 
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